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Interactions of suitable pairs of gravity waves in a shear flow are found to give 
rise to aperiodic or weakly periodic secondary motions. These secondary flows 
resemble the ‘Langmuir vortices’ which are associated with the formation of 
windrows. It seems likely that such wave interactions will play a substantial 
part in determining the quasi-steady structure of the flow when wind blows over 
a water surface. 

1. Introduction 
When sufficiently strong winds blow over bodies of water, there frequently 

appears on the water surface a fairly regular pattern of streaks, aligned approxi- 
mately in the direction of the wind. These streaks, commonly called ‘windrows ’, 
may appear as lines of foam from breaking waves, or as accumulations of other 
floating matter (leaves, seaweed, ice, etc.). Often, however, they are visible when 
no floating objects are present, owing to a change in reflectivity of the water sur- 
face in the vicinity of the streak; this change is caused by the accumulation near 
the streak of a film, or ‘slick’, of surface contaminant (usually oil or natural 
organic matter) which smoothes the water surface by eliminating short capillary 
waves. 

The first-and still the most comprehensive-experimental investigation of 
windrows was made by Langmuir (1938), who found them to be associated with 
an underlying cellular motion in the water. The streaks appear between con- 
verging surface currents and above a downward-flowing current, which are pro- 
duced by alternately rotating longitudinal vortices-nowadays often called 
‘Langmuir vortices ’. This structure is represented diagrammatically in figure 1, 
which depicts a vertical section of the flow in a plane perpendicular to the wind 
direction. The converging surface currents are clearly responsible for the accumu- 
lation of buoyant foreign matter or for the compression of a film of surface 
contamiriant into the observed longitudinal streaks. 

Since Langmuir’s experiments, there has been no shortage of theories to  
explain the occurrence of streaks on water surfaces. In  a brief but useful review, 
Stommel (1951) distinguishes between ‘single streaks’ of various origins and 
‘multiple streaks which usually appear in long parallel lines or with a vein-like 
pattern’. Of these multiple streaks, not all can be classified as ‘windrows’. For 
example, Ewing (1950) and Dietz Q Lafond (1950) have reported parallel streaks 
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with orientation bearing no relation to the wind-direction; these are apparently 
caused by internal waves, and are quite commonly observed running parallel 
to coastlines. 

A notable feature of windrows is their ability to realign themselves quickly 
in response to a change in wind direction. For example, Langmuir tells of 500 m 
long bands of seaweed, each 2-6 m wide and 100-200 m apart, which dispersed 
and then realigned themselves within 20min following a 90" change in wind 
direction. These are windrows on a very large scale: more usually, the spacing 
of the rows is of order 10m and their realignment takes only a few minutes. 
Excellent photographs of windrows are reproduced by Stommel(l951) and Ewing 
(1950). 

Windrows occur 

FIGURE 1. Diagramatic representation of Langmuir vortices, showing location of windrows 

The generation of windrows is of considerable oceanographic interest, since 
there appears to be some correlation between the depth of the thermocline and 
the spacing of the rows (see Langmuir 1938). It is hardly surprising if this is so; 
for the spacing of the rows is presumably related to the depth of penetration of 
the Langmuir vortices, and these vortices are likely to provide an efficient mixing 
mechanism. 

While it is recognized that the wind plays a crucial role, there is no real agree- 
ment as to the cause of the Langmuir vortices which give rise to windrows. 

An attractive suggestion is that they are driven by thermal or thermohaline 
convection due to surface cooling, and that the orientation of the convection 
'rolls' is determined by the shear flow induced by the wind stress. Support to 
this view is given by Owen (1966) who observed, a t  sea, rows of horizontal vortices 
about 1.5m apart, when no significant wind was present. These were almost 
certainly thermohaline in origin. Further, it is known (see Gallagher & Mercer 
1965; Deardorff 1965) that longitudinal rolls are the preferred configuration of 
thermal convection in the presence of a shear flow. In short, there seems little 
doubt that, under suitable conditions, convection-driven rolls do occur. However, 
experimental investigations by Csanady (1965) and Faller & Woodcock (1964) 
failed to find evidence of any correlation between the spacing of windrows and 
the heat flux from the water surface; on the other hand, this spacing is strongly 
dependent upon wind speed, the rows being wider apart at larger wind speeds. 
These facts suggest that the cellular structure may have a dynamic, rather than 
thermal, origin. This view is supported by Stommel (1951), who concluded that, 
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in his cinematographic studies of streaks on ponds, “thermal convection seemed 
also unlikely because the streaks occurred at  times of intense heating of the 
ponds and with a very stable epilimnion (0.1 “C m-l) ’,. 

Such a dynamic mechanism was proposed by Faller (1964), who suggested 
that Langmuir vortices are the direct result of hydrodynamic instability of the 
Ekman boundary layer in the water. He supports this view with experimental 
observations which appear to show that the orientation of windrows is sys- 
tematically deflected by a small angle to the right of the wind direction. Similar, 
but larger, deflexions were previously observed by Faller (1963) in laboratory 
experiments on the instability of Ekman boundary layers (see also Faller & 
Kaylor 1967). 

Welander (1 963) envisages a rather complicated feed-back mechanism whereby 
a surface film, concentrated near the windrow, reduces the roughness of the 
water surface by suppressing capillary waves. The associated reduction in drag 
permits a local increase in wind velocity above the windrow, and this velocity 
excess drives a secondary spiral motion in the airflow. This motion, in turn, 
maintains the compression of the surface film. However, on the basis of his 
cinematographic observations, Stommel (1951) rejects the possibility of a per- 
manent cellular structure in the air, because of its turbulent and gusty nature. 
Certainly, there is as yet no experimental evidence of such a secondary airflow. 

Kraus (1 967) has suggested that the surface film is maintained by a radiation 
stress which derives from the damping of short waves, and that the transverse 
surface currents result from the generation of waves in the regions between the 
windrows. 

Krauss ( 1966) has performed a mathematical analysis which suggests that 
striations in the wind direction might occur when the Coriolis force and pressure 
gradient balance the Reynolds stresses generated by short-crested gravity waves 
in a sea with vertically varying current. Ichiye (1967) raised objections to 
Krauss’s model, but also believed that the waves might be important; his 
heuristic analysis purports to show that streaks may be generated in a manner 
similar to the Kelvin ‘cats-eye’ pattern near the critical layer in a shear flow. 

Two recent papers, by Stewart & Schmitt (1968) and by Faller (1969), also 
consider the role of surface waves. The former authors suggest that surface 
streaks may arise owing to the intersection (without non-linear interaction) of 
two wave trains. Faller, on the other hand, performs an analysis which has some 
similarities with that of Krauss (1966) and which suggests that the Reynolds 
stresses associated with surface waves or turbulence may cause longitudinal 
rolls. Faller also describes some preliminary laboratory experiments which 
demonstrate the generation of such rolls by wave action when a shear flow is 
present. 

In  another recent paper, McLeish (1968) describes windrows at sea which were 
irregularly spaced and had frequent intersections. No steady Langmuir circula- 
tions were found in the water, and the pattern of streaks changed continuously. 
McLeish suggests that these streaks may derive from the structure of the tur- 
bulence in the water. 

Several of the above proposals are based largely on physical arguments, and 
51-2 
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the details of some of these appear unsatisfactory to the present author. How- 
ever, it  is not the purpose of this paper to speculate concerning the validity of 
each of the suggested mechanisms. In  the final analysis, any hypothesis must 
remain unproved until supported by firm experimental and theoretical founda- 
tions, and it is salutary to recall the words of Stommel (1951) concerning the 
origin of streaks on water surfaces: “I am personally inclined to admit that under 
certain circumstances any one of the processes suggested may account for them; 
to attribute all streaks to the same mechanism would be great a mistake ”. 

When windrows occur, waves are always present and the water undergoes a 
shearing motion for some depth beneath its surface. Basically, the present paper 
examines the ingredients of waves and shear flow to determine whether these 
might induce secondary motions of a type resembling Langmuir vortices. 

The physical model to be adopted is similar to that of Craik (1968) in that it 
concerns gravity-wave interactions in the presence of a uniform shear flow. This 
model is considerably simpler than those adopted by Krauss (1966) and by 
Faller (1969). However, although the complexity of the latter models precluded 
the derivation of detailed solutions such as are found here, the physical basis 
of these analyses appears to be broadly similar to the present one. The present 
analysis also has much in common with previous work of Benney (1961, 1964) 
on the development of streamwise vorticity in unstable boundary layers and 
shear layers. In  this, Benney found that aperiodic secondary motions of 
longitudinal-vortex type may be induced by the non-linear interaction of suitable 
pairs of waves, when at least one wave propagates in a direction oblique to the 
primary flow. 

We shall find that interactions of suitable pairs of gravity waves in a shear 
flow give rise to secondary motions with a structure not unlike Langmuir vortices. 
In $9 3 and 4, two inviscid models are examined to find the initial growth of these 
secondary motions following the onset of particular wave interactions. In  $6, 
a viscous analysis is presented, which reveals the steady secondary motion driven 
by the interaction of a suitable pair of waves. Finally the discussion of Q 8 attempts 
to relate these results to the observed phenomena: in particular, a plausible 
criterion is derived for the preferred spacing of windrows. 

2. The wave interactions 
The flow configuration is shown in figure 2. It is assumed that the wind- 

induced velocity profile varies linearly with depth x beneath the mean water 
surface. This approximation is likely to be a reasonable one, since the only 
relevant portion of the velocity profile is that within a layer near the surface, 
the depth of which is comparable to the wavelengths of the waves considered. 
The origin of co-ordinates is chosen in the undisturbed water surface, with the 
z axis in the direction of the wind and the y axis completing a right-handed 
Cartesian system. Velocity components in the x, y and x directions are denoted 
by u, v and w respectively. 

The primary velocity profile is then 

u = - Z Z ,  2, = w = 0, 
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where U' is a positive constant. Also present are gravity waves, each of which has 
(2, y, t )  dependence of the form exp [i(kx + Zy - w t ) ] ,  where m = (k2 + P)* is the 
wave-number and w is the frequency of the wave. In general, there will be no 
waves of significance propagating upwind, and so we shall consider only those 
which propagate with a downwind velocity component relative to the liquid 
surface. Accordingly, we take k and w to be positive real constants, but 1 may 
be either positive or negative. The linear dispersion relation for such gravity 
waves is (cf. Craik 1968, equation (2.4)) 

w = ((%) ks' + g m } * - Z ,  

where g is gravitational acceleration. 

Z 

FIGURE 2. Sketch of flow configuration. 

Now, consider two waves with wave-number components (k,, El) and (kz, Z,) 
respectively, and frequencies wl, w, given by the above dispersion relation. The 
non-linear interaction of such waves yields inertia terms in the equations of 
motion with (2, y, t )  dependence of the form 

exp[~((k lx+~,y-~ , t )  I (kz~+~,y-w,t)}l, 

which may give rise to secondary motions with similar (2, y, t )  dependence. How- 
ever, when w1 = w,, one of these secondary components is aperiodic in time; 
further, if k, = k,, this component is also independent of x. The present paper 
examines the secondary flows which result from such wave interactions. (There 
are also pairs of gravity waves, for which w, = w, but k, $: k,, whose interaction 
may give rise to secondary motions aligned obliquely to the x axis; but it does 
not seem worthwhile to consider these at  present.) 

First, we must consider the circumstances under which two waves satisfy 
the conditions k, = k, and w, = w,. For this, it  is convenient to introduce the 
angle of propagation 6' to the direction of the wind, defined as 6' = tan-l(Z/k). 
Then, from (2.1), two waves with wave-number components (k,Z,) and (k,Z,) 
have the same frequency w if 

cos el[( 1 + K sec3 HI)*  - 11 = cos 8,[( 1 + K sec3 8,)6 - 11 ( K  = 4 g k / i P ) .  
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This condition is strictly satisfied, for angles of propagation in the range 
- &n ,< 8 ,< in, only when 8, = - 8,; that is to say, when two waves propagate 
at equal and opposite angles to the wind direction. However, the condition is 
nearly satisfied by all waves, with the same wave-number component k in the 
x direction, which propagate at  suflciently small angles to the wind direction. 
In the latter case, the relevant non-linear terms of the equation of motion will 
be only weakly periodic in t ,  as exp [ i (w ,  - w2)  t ] ,  and the resultant secondary 
motions may also be of interest in the present context. 

On the basis of linearized inviscid theory, the velocity components (u,, wl, w,) 
associated with a surface wave of the form A,  exp [ i (kx + ly  - wt) ]  are given by 
(cf Craik 1968, equation (2.2)). 

mu, = kd, - lo,, 

(2.2) 

mv, = la, + k6,, m2 = k2+ 12, 

a, = -iA,exp[-mz]exp[i(kx+Zy-wt)], 

w1 = A,exp[-mz]exp[i(kx+Zy-wt)], 

exp [i(kx + Zy - w t ) ] ,  a = T-. 
u‘k 

,, lA,e-W 
li, = 

imk(z + a) 
The component $2, is that in the direction of propagation of the wave, and 6, is 
the ‘ cross-velocity ’ component parallel to the wave crests. The components 42, 
and w1 together comprise an irrotational wave; but the component 8, possesses 
vorticity which derives from the periodic stretching and contraction of the 
vortex lines in the primary flow. However, contrary to the case examined by 
Craik (1968), 6, here has no singularity a t  the depth z = -a, since ii‘ is taken to 
be positive and the liquid occupies only the region z 

In tjtj 3 and 4, we shall consider, in turn, two classes of wave interaction, which 
may be called ‘symmetric ’ and ‘non-symmetric ’ respectively. The first involves 
two similar waves propagating at  equal and opposite angles to the wind direction, 
for which the conditions k, = k ,  and w1 = w2 are exactly satisfied; and the second 
concerns a two-dimensional wave of wave-number k and a wave propagating at  
a small angle to the x direction with wave-number components (k,Z) where 
111 < k. As noted above, the condition w1 = o2 is only approximately satisfied 
in the latter case. In both these analyses, viscosity is neglected; but, in $6, a 
viscous analysis is presented for symmetric interactions. 

0. 

3. The symmetric interaction I ,  = - I, 
Consider the interaction of a wave of the form given in (2.2) with another of 

the form A ,  exp [i(kx - l y  - w t ) ] .  The velocity components (u,, w,, w,) of the latter 
wave may be obtained from (2.2) on changing the subscripts and replacing I by 
- 1. Without loss of generality, we choose 1 to be positive. The interaction of these 
waves produces a secondary motion independent of x, which we represent by the 
velocity components (u3, v3, w3). By continuity, we have 
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and we may introduce a stream function 9 = $ ( z ,  t) exp [2ily] such that 
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The momentum equations for this motion are 

au - 
3 - u'w3 = - [u . VU],, 
at 

a"3+p-1% - = -[U.VV],, 

at aY 

at 
%+p-lg = -[u.Vw]z, 

(3.2 U-C)  

where p is the density, p,(y,z,t) is the pressure component proportional to 
exp [2iZy], and the terms on the right-hand sides are those of the form exp [2iZy] 
which derive from the interaction of the two waves. The elimination of p3 from 
( 3.2  b, c )  leads to the vorticity equation 

a 
at 0 ax2- ax a 4E2# = 2il[u.Vw],--[u.Vv],. (3 .3)  

In  evaluating the non-linear terms on the right-hand side of this equation, 
the results of linear theory may be used. However, some care is necessary: in par- 
ticular, use must be made of the multiplication rule 

Re (A} Re (B} = +Re (AB + AB*), 

where B" is the complex conjugate of B. After some reduction, it is found that 
the right-hand side of (3 .3)  equals 

2(3k2 + 12)  5k2 - 312 [ m2(z+a)  
ilA, AX exp [Zily - 2mz] 

Since the velocity components v3 and w, must tend to zero at  large depths, 
we have the boundary condition 

#(m,t) = 0. (3 .4 )  

In addition, there are kinematic and pressure boundary conditions to be satisfied 
at the water surface. 

We denote the position of the water surface by 

z =  c ( 2 , Y , t )  = <1+<2+&+..*, 

where the I$ are the displacements associated with each periodic disturbance: 
thus, cl,2 are the surface displacements of the waves ,.41,2 exp [ i (kx  & ly - wt)], 
and Q is the displacement proportional to exp[2ily] corresponding to the 
secondary velocity components 0, and w3. Assuming that the pressure component 
proportional to exp[2ily] is zero a t  the surface x = 5, we have the boundary 
condition 

(3 .5 )  
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where p ,  is the pressure component associated with v, and w,, and where the 
non-linear terms derive from the interaction of the two waves. Also, the corre- 
sponding kinematic surface condition is 

(3.6) 

Now, if the results (2.2) of linear theory are used to evaluate the non-linear 
terms of these relations, it  is found that the right-hand side of (3.6) is identically 
zero, and that the right-hand side of (3.5) is independent of time t. We therefore 
obtain the simple result 

w ap3 (2 = O ) ,  
- pg at (3.7) 

from which the nonlinear terms have vanished identically. Further, equation 
(3.2b) yields the relationship 

a2v, Zilap, -+-- = 0, 
a t 2  p at 

and these two results combine to give the final boundary condition, that 

a2v3 
ilgw, = 0 (2 = 0). (3.8) at2 

__- 

It must be emphasized that the non-linear terms resulting from the wave 
interaction have not been neglected in deriving this boundary condition; these 
terms vanish identically when they are evaluated by means of linear theory. 

If we now suppose #(z,  t )  to be of the form 

il 
5k t )  = q q $ ( z ) ,  (3.9) 

the equation (3.3) and boundary conditions (3.4) and (3.8) reduce to 

2 3k2fE2) m(5k2- 312) 2 ( k 2 - P )  
( z + a ) 2  

+ ] = G ( z )  d2f - 4pf = e-2mz [ 2m 1 + a + 
dz2 

f(m) = 0, f(0) = 0. 
The solution for f(z) is then 

(3.10) 

(3.11) 
and evaluation of the integrals yields 

f(z) = ($ma + ZZm2 - 2 P )  ez(m-0a e--2rz [E1{2(m - 0 (2 +a)} - E1{2(m - 1 )  a}] 

+ (&ma- 2Zm2 + 21,) e2(m+oa [e* El{2(m + I )  (z  +a)} - e-~zE,{2(m + 1 )  a}], 
(3.12) 

where 
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We note that, when ,u is large, ,ue~E,(,u} N 1 : therefore, when 2(m - I )  a 9 1, 
a good approximation for all z is found to be 

(m4 + 4k2m2 - 4k4) e-2m 
(3.13) 

Clearly,&) may now be calculated, from either (3.12) or (3.13), for particular 
values of m, 1 and a. This has been done for the case m = 0.1 cm-l, 1 = 0.02 cm-l 
and a = lo2 cm, which represents waves approximately 60 cm in length propa- 
gating at angles of 114" to the wind direction, in the presence of a velocity 
gradient F' of about 1 sec-1. The functionsf(z) andf'(z) for this case are shown in 
figure 3. 

f(4 = 2k2 (z+a a 

FIGURE 3. The functionsf(z) andf'(z) for the case m. = 0.1 cm-1, 
t = 0-02 cm-l, a = 100 om. 

The complex stream function for the secondary velocity components v3, w3 is 

$(y, x ,  t )  = tA1Ag(il/m4) f(2) e2ilg. 

This motion, which is initially zero, grows linearly with time; also, the streamlines 
in the y-x plane satisfy equations of the form 

Re {A1A~(iZ/m4)f(z) e2"") = constant. 

Further, the location of the axis y = 0 may be chosen, without loss of generality, 
so that (iAIAg) is real and the streamlines are given by 

f (2 )  cos 21y = constant. 

For the case defined above, such streamlines are shown in figure 4. 
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It remains to  calculate the velocity component us in the x direction. This is 
readily obtainedfromequation (3.2a), since thenon-linear termsvanish identically 
when evaluated by linear theory, and we are left with the simple result 

au,jat = uiw3. 
This, together with (3.9), gives 

u, = Re ( t2  r$) A ,  Agf(z) e2{[Y 

showing that u3 grows as t2 instead oft, and that the dependence 
with that of w3. 

Y (em) 

(3.14) 

on z is identical 

FIGURE 4. The strearnlinesf(z) cos 2Zy = constant, for the symmotric 
interaction m. = 0.1 cm-l, I = 0.02 em-l, a: = 100 cm. 

4. A non-symmetric interaction 
Suppose, now, that a two-dimensional wave A ,  exp [i (kx  - w t ) ]  interacts with 

an oblique wave A ,  exp [i (kx- ly-w' t )] ,  where k 9 1 and, for convenience, 1 is 
taken to be positive. Then, as shown in $ 2 ,  the frequencies w and w' are nearly, 
but not quite, equal, with w' slightly larger than w .  Accordingly, we define 
Aw = w' - w .  The velocity components (ul, v,, w,), (u2, v,, w,) associated with the 
waves are readily obtained from (2.2). (It is seen immediately that v1 = 0.) The 
interaction of these waves yields some non-linear inertia terms of the form 
A,& exp [i(Zy+Awt)], which vary only slowly with time. We represent the 
resultant secondary motion by the velocity components (u,, v3, w3), and we 
define a stream function @ = $(z,  t) eizg such that 

The equations of motion (3.2a-c) now yield the result 

a a 
12# = il[u. VW], - ~ [u. Vvl,, -(-- at  322 1 a x  
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and the non-linear right-hand side may be evaluated by linear theory a8 

81 1 

Also, it may be shown that the boundary conditions at the liquid surface yield, 
as the result equivalent to (3 .8) ,  

a2v, 
-- ilgw, = __ A,Atexp[i(Zy+Awt)] ( z =  0) .  (4 .3 )  
at2 

We note that, in this case, the non-linear terms are not now identically zero. The 
boundary condition at infinity is again 

q5=0 (z=m). (4 .4 )  

Some difficulties are encountered if, as was done in $ 3 ,  the solution $(z, t )  is 
required to vanish at  t = 0. For this to be so, #(z, t )  must take the form 

(provided, of course, that linear gravity-wave components with frequency ( g l ) g  
are assumed to be absent). The function f(z) must then satisfy the equation 

while (4 .3)  and (4 .4 )  yield the three boundary conditions 

Awm3 (1 +A), f(W) = 0. (4 .6a -c )  
(Awl2 

f(0) = 0, f(O)+--f’(0) = -- 1% 2w 

Clearly, the boundary conditions are over-specified and no solution (fz) can be 
found. 

However, we may find a solution denoting an initially irrotational secondary 
flow, which subsequently develops vorticity. If we write 

and require that the associated disturbance is irrotational at t = 0, h(z) must 
satisfy the equations and boundary conditions 

12h = 0, h(0) = (Aw)-lf(O), h ( ~ )  = 0, (4 .7a-c)  
a22 

a2h -- 

and f(z) must satisfy equation (4.5) and the two boundary conditions (4 .6b ,  c ) .  
This now constitutes a well-posed problem. 

When Aw is sufficiently small, the boundary conditions (4.6b,c) and (4 .7b , c )  
may be approximated by 

f(0) = 0, f(W) = 0; h(0) = -- 1+-  h ( ~ )  = 0. ( 4 . 8 )  Yi ( :a) 3 
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(Note that, to this approximation, a solution #(z,  t )  which is zero at  t = 0 may 

The functions f(z) end h(z) are both real, and the solutions which satisfy the 
also be found, since (4.6a, b )  become identical.) 

boundary conditions (4.8) are found to be 

When (m + k - I) a B 1, a good approximation for f (2) is 

(4.10) 

The streamlines for the motion in the y-z plane are given at any instant by 

The secondary flow is clearly periodic in time with frequency Aw. Since Aw/w 

the inequality ((eiAot- l ) f ( z ) I  B Awlh(z)I 

is satisfied for all t not too close to 2n-nlA0, where n is integer, and for all z not too 
near zero. If also we choose AIAt to be real, the approximate streamlines at  any 
instant are given by 

f(z) [cos (Zy + Awt) - cos Zy] = constant. 

This flow may conveniently be regarded as that for two identical systems of 
alternately rotating longitudinal vortices, of which one is stationary and the 
other travels with velocity AwIZ in the negative y direction. For the particular 
case m = 0.1 em-l, Z = 0.02 cm-l, a = 20.2 cm, the lines on which f(z) cos Zy is 
constant are shown in figure 5. For this case, u' = 4-04~ec-l~ the oblique wave 
propagates at  11io to the wind direction and Aw = 0.12 sec-l. (The period 27r/Aw 
is then only about a minute, but i t  becomes increasingly large as the angle of 
propagation of the oblique wave decreases.) 

The velocity component u3 in the x direction may be obtained from equation 
(3 .2a ) .  On evaluating the non-linear terms by the results of linear theory, we 
find that 

1 , 

If us = 0 at  t = 0, the appropriate solution is 
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Also, for sufficiently small A@, a good approximation except very near z = 0 and 
t = O i s  

For small values of Awt, it  is seen that u3 is proportional to t2 ,  as was the case in 
result (3.14). 

0 

N 

60 f 80 

Y (em) 
20 40 60 80 100 120 140 

i 
FIamE 5. The lines f(z) cos ly = constant, for the non-symmetric interaction 

m = 0.1 em-’, I = 0.02 om-l, 01 = 20.2 cm. 

5. The approximations 
There are several approximations and assumptions implicit in the analyses of 

$53 and 4. First, it was assumed that the properties of the interacting waves 
may be described by linearized theory. A necessary condition for this is that the 
wave-slopes are sufficiently small; that is, 

Secondly, it was assumed that the secondary flow produced by interaction of the 
two waves does not itself modify either of these waves by its interaction with the 
other. For example, there are non-linear terms proportional to exp [i(h + Zy - ot)] 
which involve products of the secondary flow (us, v3, w3) and the wave (uz, v2, wz),  
but these have been neglected in evaluating the properties of the wave (ul, vl, wl ) .  
Since the secondary flows found in $8 3 and 4 grow with time, it is clear that this 
assumption must eventually be violated: in consequence, the analysis is valid 
only for sufficiently small times. More precisely, we require that 

( t lw )  I W , 2 I 2 ,  t 21~~1 ,2 l2  < 1 

in the analysis of $ 3, and that 

in the analysis of $4. (In deriving these conditions it was assumed that o/zi’ 
is O(1) by virtue of the dispersion relationship (2.1).) 
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A third approximation was the adoption of an inviscid model, whereas, in 
practice, the influence of viscosity is significant in a layer near the surface. A 
further related approximation was the neglect of systematic tangential stress 
variations a t  the water surface which derive from the action of the airflow and of 
surface contamination. Thus, a viscous analysis would involve satisfying, at the 
water surface, an appropriate tangential-stress condition which takes these 
variations into account. For the secondary flows in question, the viscous boundary 
layer would penetrate to a depth S N 0 [(@I beneath the water surface. Since, 
for the results of $5  3 and 4 to provide reasonable approximations, it is necessary 
that 8 is small compared with m-1, we require that 

m-l(vt)i < 1.  

Subject to the above conditions, the analyses of ij$3 and 4 constitute a self- 
consistent theory which describes the initial development of longitudinal vortex- 
type flows. These analyses seem capable of extension to velocity profiles which 
are other than linear, but considerable complications arise. In  the interests of 
simplicity and brevity, such extensions are not attempted here. However, the 
same physical mechanism is sure to operate: the gravity waves distort the 
vorticity field associated with the primary flow, and their non-linear interaction 
causes a vorticity transfer from the primary flow to the secondary disturbance. 

6. A steady viscous solution 
For symmetric interactions of the type examined in 5 3, a steady-state solu- 

tion may be found by incorporating the effect of viscosity. On including the 
viscous terms and assuming that the secondary flow is steady, the appropriate 
equations for the velocity components (u,, v,, w3) are 

v -- 412 u,+;li'w, = [U.VU],, 
(:2 ) 

a - v  ( --@ ::2 ) (d",z. -- 412) 4 = BiE[u. Vw], - - [u . Vv],, 
az 

where q5 is now a function of z only. The right-hand sides of equations (6.1) and 
(6.2) are the same as those of ( 3 . 2 ~ )  and (3.3) respectively, and v denotes the 
kinematic viscosity. 

Since aC,/ai! is zero for steady flow and since the right-hand side of (3.6) is 
identically zero for the symmetric interaction considered, the kinematic boundary 
condition is 

The normal-stress boundary condition equivalent to (3.5) now involves viscous 
terms ; however, this boundary condition has no dynamic significance since it 
serves only to yield an expression for the surface displacement Q. If the appro- 
priate component of tangential stress is zero at the water surface-that is, if we 

w3 = 0 ( z  = 0). 
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may neglect such systematic stresses as may derive from the airflow and from 
surface contamination-we have the boundary condition 

It may be verified that, for symmetric interactions, the right-hand side of this 
equation is identically zero. Thus, the boundary conditions for 4 are found to be 

d24  $4 = 0, __ = 0 (2 = O ) ,  
dz2 

4, 4' N 0 (2  + a). 
If, now, we define CD by 

it is seen from (6.2) that @ satisfies the equation and boundary conditions 

where G(z )  is as defined in (3.10) and the latter boundary condition results from 
the requirement that the vorticity perturbation tends to zero at large z.  Clearly, 
the solution is 

@ > ( X I  =m, 
wheref(z) is as given in (3.12). The function $(z )  therefore satisfies the equation 
and boundary conditions 

which has a solution identical in form to the right-hand. side of (3.1 l), but with 
G(x) replaced by the right-hand side of the.present equation. 

It is now a simple matter to state the explicit solution for $4(z). However, for 
brevity, we restrict attention to cases where 2(m - I) a $. 1, when a much simpler 
approximate solution is valid. This approximate solution is found to be 

# = -  8vm4k4 [z- a (6.4) 
- k22) e-"I iAlA$(m4 + 4 k k 2  - 4k4) 1 e-2mz 

which, when iA,Ag is taken to be real, yields streamlines of the form 

S U C ~  streamlines are shown in figure 6 for the case m = 0.1 cm-l, 1 = 0.02 cm-1, 
a = 100 cm. Clearly, these are only qualitatively similar to the streamlines shown 
in figure 4 for the corresponding initial flow. As was to be expected, the diffusive 
role of viscosity has decreased the shear near the surface, and the maximum 
vertical velocities now occur at greater depth. 
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The velocity component us is readily found from (6.1), where, as in $3,  the 
right-hand side is identically zero. The appropriate equation and boundary 

conditions are then U‘WB 
($412) = -- v ’  

us = 0 (z= oo), au3/az = 0 (2 = O ) ,  

where w3 is known. If we again assume that 2(m-Z)a % 1, the approximate 
solution is found to be 

u’A, A,*(m4 + 4k2m2 - 4k4) 
1 6v2m4k4 

u3 = 

The above viscous analysis is likely to be valid only when the conditions 

Y (em) 
-40 -30 -20 -10 0 10 20 30 40 

case, for 
100 em. 

are satisfied. The last two conditions, which ensure that the secondary flow does 
not influence either of the primary waves through its interaction with the other, 
place a rather severe limitation on the amplitudes of the waves. One may imagine 
that, subject to these conditions, a smooth transition from the initial-growth 
solution of $ 3  to the present steady state would be accomplished by the gradual 
increase in importance of viscous diffusion. 

7. The Stokes contribution 
The foregoing analysis yields second-order Eulerian velocity components 

associated with particular wave interactions. However, the second-order Lag- 
rangian velocity components are somewhat different owing to ‘Stokes drift ’ 
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contributions from the waves. These contributions are obtained by selecting 
those terms of appropriate periodicity from the expression for the Stokes velocity 

the bar denoting the average over a wave period and the velocity components 
ui = (u, v, w) being given by linear theory. It is clear that ei is independent of 
time, unlike the secondary flows of $$ 3 and 4, the former of which grows linearly 
in time. Consequently, after a sufficient time, the Eulerian velocities associated 
with these secondary flows are likely t o  be large compared with the Stokes 
velocities. Also, it is readily shown that, for the steady secondary flows examined 
in $6, the Eulerian velocity components greatly outweigh the Stokes contribution 
when U’/k2v 9 1. 

A closer examination further reveals that symmetric interactions among waves 
of equal amplitude (i.e. those discussed in $$3  and 6 with \All, (A,\  equal) yield 
a Stokes contribution to the longitudinal vorticity which is identically zero. 

The above facts indicate that the Stokes contribution to longitudinal vortex 
flows of the present type may usually be neglected. Such contributions may be 
calculated without undue difficulty if desired; but they are here omitted for the 
sake of brevity. 

8. Discussion 
Subject to the stated conditions, the analyses of $ 5  3 and 4 describe the initial 

growth of longitudinal vortex flows owing to symmetric and non-symmetric 
wave interactions, while the analysis of $6  depicts a steady vortex flow resulting 
from a symmetric wave interaction. Inevitably, however, these analyses stop 
far short of a complete description of the quasi-steady secondary motions which 
exist when wind blows over a water surface. The analyses concern only specific 
wave interactions; whereas, in practice, a whole spectrum of waves are present, 
many pairs of which may drive aperiodic or weakly periodic vortex motions. 
The final quasi-steady structure will be determined by a complicated non-linear 
interaction of all the components, and additional factors such as surface con- 
tamination, turbulence due to wave-breaking, thermal effects and the Coriolis 
force may all influence the flow. 

This view is consistent with the suggestion of McLeish (1968) that windrows 
at sea may derive from the turbulence in the water. For a large part of the motion 
near the surface is attributable to a primary shear flow together with a continuous 
gravity-wave spectrum; and the present work shows how these ingredients may 
interact to produce the (unsteady) longitudinal vortices which are a characteristic 
feature of the turbulence. 

A comparison of the secondary flows predicted by the present analysis and 
the existing observations of Langmuir vortices is necessarily rather tentative, 
in view of both the limitations of the analysis and the scarcity of reliable observa- 
tional data. However, such a comparison is of some interest, for certain features 

F L M  41 5 2  
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of the observed phenomenon are fairly convincingly reproduced by the simple 
theoretical model. 

Other features, of course, are not contained in the theoretical model. The 
asymmetries reported by Faller & Woodcock (1964) and Welander (1963), 
which may be attributable to the influence of the Coriolis force, are not repre- 
sented. Nor does the analysis yield any prediction of a ‘critical wind speed’ 
at  which windrows first occur. Such a critical speed has been reported by many 
authors, and it is undoubtedly true that rows are seldom observed at  wind speeds 
below about 3msec-1. It seems likely that some secondary circulation due to 
wave interaction will occur at  all wind speeds, provided there is a shear flow in 
the water. However, horizontal motion at the water surface is probably sup- 
pressed by surface contamination when the underlying circulation is weak. 
Windrows will h s t  be observed when the circulations are sufficiently strong to 
compress the surface film into discontinuous bands. 

The analyses of $93 and 4 may serve to explain the rapid realignment of 
windrows following a sudden change in wind direction. For the necessary 
secondary flows will result as soon as the new primary shear flow is established 
in the upper layers of the water: there need not even be a substantial change in 
the wave spectrum, since suitable interactions may take place among the waves 
already present. These vortex motions will subsequently be reinforced as new 
waves are generated by the wind. (In fact, the analyses of $ 5  3 and 4 may readily 
be extended to show that, for two primary waves growing as efflt and eff8t re- 
spectively where u1 and u2 are small, the secondary flow grows approximately 

Presumably, the pattern of windrows will be most regular and parallel when 
suitable components of the wave spectrum are dominant. This may explain why 
windrows on lakes are usually more regular than at  sea: the wave motion in lakes 
is likely to be less complex, and there may more readily emerge a single dominant 
vortex structure which determines the spacing of the windrows. However, the 
detailed prediction of this flow is outside the scope of this (or any) analysis. 
Indeed, it is impossible even to generalize the analysis of $ 3  to examine the 
initial development of the secondary flow resulting from interactions among a 
given wave spectrum: for, without a knowledge of the phase of each wave com- 
ponent, there is no way of telling whether contributions of particular interactions 
may reinforce or cancel each other. The nearest one can come to a prediction of 
row spacing is to discover, for a given gravity-wave spectrum, the fastest- 
growing component predicted by the analysis of $3  and also the dominant steady 
component predicted by the viscous analysis of $ 6. If the spanwise periodicities 
of these two components are in reasonable agreement, it is at least plausible that 
these may be closely related to the spacing of windrows. 

Probably, the most appropriate criterion for determining the ‘ fastest-growing ’ 
component of $3  and the ‘ dominant ’ component of $ 6 is the longitudinal vor- 
ticity. Accordingly, we shall seek those disturbances for which $$3 and 6 predict 
the greatest growth-rate of vorticity and the greatest vorticity respectively. 

First, we assume the presence of a continuous spectrum of wind-generated 
gravity waves. The associated linearized velocity components at each point 

as e(ffi+cdt.) 
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(x, y, z )  may then be represented as Fourier integrals: in particular, we take the 
vertical velocity to be 

A (m, 8)  exp [ - mz] exp [ i (kz  + ly - wt) ]  dm do, 

where m = (k2+ Z2)*, 6 = tan-l (Elk) and w(m, 8) is given by the dispersion rela- 
tion (2.1). Suppose, also, that 

where G(8) in an even function of 8 whose value is unity at  8 = 0. Two such 
functions, each of which may provide an acceptable estimate for G(8), are 

G,(6) = C O S ~ ( + @  (0 < 181 < n), G2(8) = eos28 (0 < 161 < in) 
= o  (in < 161 < n). 

We now consider the initial growth of disturbances given by 9 3. [Note that the 
non-symmetric interactions of 9 4 yield secondary flows whose amplitudes are 
bounded and vary periodically in time, whereas the symmetric interactions of 
8 3 drive secondary flows which grow in time until the eventual violation of the 
basic assumptions of the analysis. Accordingly, we can probably ignore the non- 
symmetric interactions when searching for the dominant vortex structure.] 

It is readily seen from (3.3) that the growth-rate of longitudinal vorticity 
attains its greatest value a t  the free surface z = 0. When (m - I) a 9 1, this value 
is close to B(m, 8) cos (219 + 8) where 8 is some phase factor and 

Using the results k = m cos 8, I = sin 8 and setting w "N (gm)!z, we obtain 

B(m,O) = 2~'g-*m~~A(m)[2(1+2cos28)sin8cosBG(8). 

With G(8) replaced by a,(@ defined above, B(m,8) has a maximum with 
respect to 8 at 8 = 29"; whereas, with G(8) set equal to G2(8), the maximum 
occurs at 8 = 26". These results are similar, and support the view that the 
optimum angle 8 is not strongly dependent on the precise form of G(6) .  

Now, if the wave energy is distributed according to the Neumann spectrum 
(see for example Kinsman 1965, chapter 8), 

IA(m)12 = w21u(m)12 = const x w-4exp [- 2g2w-2U-21 (w 2 w,), 

= o  (w < Oo), 

where U is the wind speed and w, is a cut-off frequency which is dependent on 
fetch and time. Taking w2 = gm, it is found that B(m, 8 )  has a maximum with 
respect to m at m, = 2g/U2 provided m, > m,, where m, = o t / g  is the cut-off 
wave-number. However, in most cases of interest m, is likely to be large compared 
with m,, and B(m, 8) then attains its greatest value close to the cut-off wave- 
number m,. 

We shall take the maximum value of B(m, 8) to occur close to m = m, and 
6 = 28'. Then since 8 = sin-l (Z/m) and the spatial periodicity of the secondary 

52-2 
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disturbance is h = ~ 1 1 ,  the spacing associated with the fastest growing disturbance 
is 

7l 
A % - - -  - 6.7m;l. 

rn, sin 8 

A similar procedure applied to  the results of $6 yields the spacing of the 
steady disturbance with greatest vorticity. The vorticity, given by the right-hand 
sideofequation (6.3), has magnitude H(m, 8, z )  = v-lIA(rn, 8)121m-pf(z) where&) 
jsgivenapproximatelyby (3.13). When Im-ZJ a 1, thegreatestvorticityoccurs 
a t  depth zo where exp [2(m - 1 )  z,] z m/Z. At this depth 

approximately, which has a maximum with respect to 8 at 8 = 33" when 
G(8) = Gl(8) and a t  8 = 28" when G(8) = G,(8). If, also, the maximum with 
respect to m again occurs close to the cut-off wave-number m,, the preferred 
spacings are 

(8.2) I -  5.77m;l (8 = 33") 
m, sin 8 - (,a69 m i l  (6' = 28") 

Results (8.1) and (8.2) are in good agreement: we have therefore shown that 
the spacing associated with the fastest growing component is close to that of 
the greatest component occurring in the steady state. Despite the limitations of 
the analysis from which these results were derived, i t  is reasonable to expect that 
this spacing may correspond to that of observed windrows. The above results 
may be summarized by the statement that the row spacing is approximately 
e q w l  to the cut-off wavelength of the wave-energy spectrum. This criterion seem6 
to be consistent with existing observations. 

However, the above criterion is not applicable when the spectrum is par- 
ticularly well-developed, for the maxima with respect to m of B(m,O) and 
H(m, 8, zo) do not then occur close to the cut-off wave-number m,. Instead, 
B(m, 8) attains its maximum at m, = 2g/U2 where m, > m,, and the associated 
spacing is h 3.3U2/g. The corresponding maximum of H(m, 8, z,) may be shown 
to occur a t  m2 = 8917 U 2  provided m > m,, and the preferred spacing is then 
h z 6U2/g. At typical wind speeds, these spacings are lOOm or more, which 
estimates may furnish upper bounds for the spacing of windrows. 

It may be concluded with some certainty that wave interactions of the type 
considered will usually play a substantial part in the formation of longitudinal 
vortices and, consequently, of windrows. However, it is desirable that further 
experiments be undertaken, comprising the simultaneous measurement of wind- 
speed, shear flow in the water, wave spectrum, and the spacing and structure of 
Langmuir vortices. I n  particular, such measurements would provide a test of 
the spacing criteria just derived. 

T 
A%--- 

This work was begun during a visit to the National Institute of Oceanography, 
Wormley in July 1968. I am grateful to the Director, Dr G. E. R. Deacon, for 
making this visit possible, and to Dr S. A. Thorpe for his stimulating and helpful 
comments. 
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